7,383 research outputs found

    SL(2,R) Yang-Mills theory on a circle

    Get PDF
    The kinematics of SL(2,R) Yang-Mills theory on a circle is considered, for reasons that are spelled out. The gauge transformations exhibit hyperbolic fixed points, and this results in a physical configuration space with a non-Hausdorff "network" topology. The ambiguity encountered in canonical quantization is then much more pronounced than in the compact case, and can not be resolved through the kind of appeal made to group theory in that case.Comment: 10 pages, Goteborg ITP 94-19, Contains two files: A latex file with all figures drawn in latex and a tar archive including a slightly modified latex file (uses psfig) and nicer postscript figures+necessary macro

    Degenerate Sectors of the Ashtekar Gravity

    Full text link
    This work completes the task of solving locally the Einstein-Ashtekar equations for degenerate data. The two remaining degenerate sectors of the classical 3+1 dimensional theory are considered. First, with all densitized triad vectors linearly dependent and second, with only two independent ones. It is shown how to solve the Einstein-Ashtekar equations completely by suitable gauge fixing and choice of coordinates. Remarkably, the Hamiltonian weakly Poisson commutes with the conditions defining the sectors. The summary of degenerate solutions is given in the Appendix.Comment: 19 pages, late

    TarTar: A Timed Automata Repair Tool

    Full text link
    We present TarTar, an automatic repair analysis tool that, given a timed diagnostic trace (TDT) obtained during the model checking of a timed automaton model, suggests possible syntactic repairs of the analyzed model. The suggested repairs include modified values for clock bounds in location invariants and transition guards, adding or removing clock resets, etc. The proposed repairs are guaranteed to eliminate executability of the given TDT, while preserving the overall functional behavior of the system. We give insights into the design and architecture of TarTar, and show that it can successfully repair 69% of the seeded errors in system models taken from a diverse suite of case studies.Comment: 15 pages, 7 figure

    Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    Full text link
    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially non-localized few-fermion state into a localized state with strong inter-trap pairing. For an instant, non-adiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions

    A trick for passing degenerate points in Ashtekar formulation

    Get PDF
    We examine one of the advantages of Ashtekar's formulation of general relativity: a tractability of degenerate points from the point of view of following the dynamics of classical spacetime. Assuming that all dynamical variables are finite, we conclude that an essential trick for such a continuous evolution is in complexifying variables. In order to restrict the complex region locally, we propose some `reality recovering' conditions on spacetime. Using a degenerate solution derived by pull-back technique, and integrating the dynamical equations numerically, we show that this idea works in an actual dynamical problem. We also discuss some features of these applications.Comment: 9 pages by RevTeX or 16 pages by LaTeX, 3 eps figures and epsf-style file are include

    Collapse of the quantum correlation hierarchy links entropic uncertainty to entanglement creation

    Full text link
    Quantum correlations have fundamental and technological interest, and hence many measures have been introduced to quantify them. Some hierarchical orderings of these measures have been established, e.g., discord is bigger than entanglement, and we present a class of bipartite states, called premeasurement states, for which several of these hierarchies collapse to a single value. Because premeasurement states are the kind of states produced when a system interacts with a measurement device, the hierarchy collapse implies that the uncertainty of an observable is quantitatively connected to the quantum correlations (entanglement, discord, etc.) produced when that observable is measured. This fascinating connection between uncertainty and quantum correlations leads to a reinterpretation of entropic formulations of the uncertainty principle, so-called entropic uncertainty relations, including ones that allow for quantum memory. These relations can be thought of as lower-bounds on the entanglement created when incompatible observables are measured. Hence, we find that entanglement creation exhibits complementarity, a concept that should encourage exploration into "entanglement complementarity relations".Comment: 19 pages, 2 figures. Added Figure 1 and various remarks to improve clarity of presentatio

    Screening of organically based fungicides for apple scab (Venturia inaequalis) control and a histopathological study of the mode of action of a resistance inducer.

    Get PDF
    A range of possible substitutes for copper-based fungicides for control of apple scab (Venturia inaequalis) in organic growing were tested in laboratory and growth chamber experiments in the Danish project StopScab (2002-2004). Eighteen crude plant extracts, 19 commercial plant-based products and 6 miscellaneous compounds were tested for their ability to reduce scab symptoms on apple seedlings. Most of the compounds were also tested for their effect on conidium germination on glass slides. Fourteen of the crude plant extracts, 13 of the commercial plant products and 5 of the miscellaneous compounds showed promising control efficacies when used either preventively or curatively in the plant assay. A histopathological study was carried out on the mode of action of the resistance inducer, acibenzolar-S-methyl (ASM), which reduced scab severity and sporulation on apple seedlings in several plant assays when applied as preventive treatment. The effect of the inducer on key pre- and post-penetration events of V. inaequalis was studied and compared to these events in water-treated control leaves. The histopathological study showed that the inducer had its strongest effect on post-penetration events indicated by delayed infection and reduced stroma development. In addition, a small but significant inhibition of conidial germination and a stimulation of germ tube length were observed. This investigation provides new histopathological evidence for the mode of action of ASM against V. inaequalis and serves as a model for evaluation of the mechanisms by which the organically based fungicides reduce infection of V. inaequalis

    Quark-Gluon Jet Differences at LEP

    Full text link
    A new method to identify the gluon jet in 3-jet ``{\bf Y}'' decays of Z0Z^0 is presented. The method is based on differences in particle multiplicity between quark jets and gluon jets, and is more effective than tagging by leptonic decay. An experimental test of the method and its application to a study of the ``string effect'' are proposed. Various jet-finding schemes for 3-jet events are compared.Comment: 11 pages, LaTeX, 4 PostScript figures availble from the author ([email protected]), MSUTH-92-0

    Causal structure and degenerate phase boundaries

    Get PDF
    Timelike and null hypersurfaces in the degenerate space-times in the Ashtekar theory are defined in the light of the degenerate causal structure proposed by Matschull. Using the new definition of null hypersufaces, the conjecture that the "phase boundary" separating the degenerate space-time region from the non-degenerate one in Ashtekar's gravity is always null is proved under certain circumstances.Comment: 13 pages, Revte
    corecore